ODYSSEY Molecular Explorer

Release 7.0 —

Correlation with the

Louisiana Science Content Standards

Promulgated November 2005

Physical Science

Benchmarks 9-12

As students in Grades 9-12 extend their knowledge and abilities, what they know and are able to do includes:

2. Atomic Structure:

- a. describing the structure of the atom and identifying and characterizing the particles that compose it (including the structure and properties of isotopes)
 - → **D2** Atoms "Distribution of Mass in Atoms"
 - → D3 Atoms "Isotopes"
- c. understanding that an atom's electron configuration, particularly that of the outermost electrons, determines the chemical properties of that atom
 - → **D8** Atoms "Atomic Orbitals"
 - → **D9** Atoms "Comparing Helium, Neon, and Argon"
 - → **D14** Atoms "Orbitals of a Krypton Atom"
- **3.** The Structure and Properties of Matter:
 - a. distinguishing among elements, compounds, and/or mixtures
 - → C3 Chemical Matter "Examples of Elements"
 - → C4 Chemical Matter "Types of Compounds"
 - → C5 Chemical Matter "Types of Mixtures"
 - c. understanding that physical properties of substances reflect the nature of interactions among its particles
 - → H11 Liquids & Solids "Intermolecular Forces"

- e. understanding that chemical bonds are formed between atoms when the outermost electrons are transferred or shared to produce ionic and covalent compounds
 - → F8 Chemical Bonding "Energetics of Covalent Bonding"
 - → F13 Chemical Bonding "Classifying by Bond Polarity"
- f. recognizing that carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures
 - → **S1** Organic Chemistry "How Special is Carbon?"
- g. using the kinetic theory to describe the behavior of atoms and molecules during phase changes and to describe the behavior of matter in its different phases
 - → C6 Chemical Matter "States of Matter"
 - → C7 Chemical Matter "Comparing States Side-by-Side"
 - → G22 Gases "Distribution of Kinetic Energies"
 - → H2 Liquids & Solids "Salt Crystals"
 - → H7 Liquids & Solids "Volume and Shape of Liquids"
 - → **H9** Liquids & Solids "Molecular Motion and Physical States"

4. Chemical Reactions:

- d. analyzing the factors that affect the rate and equilibrium of a chemical reaction
 - → M2 Kinetics "Reactive Collisions"
 - → M3 Kinetics "Mechanism of a Reaction"
 - → N2 Equilibria "Equilibrium and Temperature"
 - → N3 Equilibria "Equilibrium and Pressure"

6. Energy:

- b. applying the universal law of conservation of matter, energy, and momentum, and recognizing their implications
 - → L4 Thermochemistry "Vibrating Diatomic Molecule"

Grade Level Expectations

Physical Science (Grade 9)

Measurement and Symbolic Representation

1. Measure the physical properties of different forms of matter in metric system units (e.g., length, mass, volume, temperature)

- → **G6** Gases "Gas Pressure" → G8 Gases "Temperature Scales" 2. Gather and organize data in charts, tables, and graphs → Many Labs Atomic Structure 5. Identify the three subatomic particles of an atom by location, charge, and relative mass → **D2** Atoms "Distribution of Mass in Atoms" 6. Determine the number of protons, neutrons, and electrons of elements by using the atomic number and atomic mass from the periodic table → **D2** Atoms "Distribution of Mass in Atoms" The Structure and Properties of Matter homogeneous) based on their physical and chemical properties
- - 11. Investigate and classify common materials as *elements*, *compounds*, or *mixtures* (heterogeneous or
 - → C3 Chemical Matter "Examples of Elements"
 - → C4 Chemical Matter "Types of Compounds"
 - → C5 Chemical Matter "Types of Mixtures"
 - 17. Name and predict the bond type formed between selected elements based on their locations in the periodic table
 - → **F11** Chemical Bonding "Polar Bonds and Molecules"
 - → **F13** Chemical Bonding "Classifying by Bond Polarity"
 - 18. Diagram or construct models of simple hydrocarbons (four or fewer carbons) with single, double, or triple bonds
 - → **S2** Organic Chemistry "Straight-Chain Alkanes"
 - → **S9** Organic Chemistry "Isomers of Alkenes and Alkynes"
 - 19. Analyze and interpret a graph that relates temperature and heat energy absorbed during phase changes of water
 - → **H20** Liquids & Solids "Melting Transition"
 - 20. Predict the particle motion as a substance changes phases
 - → C13 Chemical Matter "Physical Changes"
 - → **H20** Liquids & Solids "Melting Transition"

Chemical Reactions

- 21. Classify changes in matter as physical or chemical
 - → C12 Chemical Matter "Types of Properties"
- 27. Distinguish between endothermic and exothermic reactions
 - → M3 Kinetics "Mechanism of a Reaction"
 - → N2 Equilibria "Equilibrium and Temperature"

Energy

- 38. Analyze diagrams to identify changes in kinetic and potential energy
 - → L4 Thermochemistry "Vibrating Diatomic Molecule"
- 39. Distinguish among thermal, chemical, electromagnetic, mechanical, and nuclear energy
 - → **L2** Thermochemistry "Thermal Energy"

Chemistry (Grades 11-12)

Atomic Structure

- 13. Identify the number of bonds an atom can form given the number of valence electrons
 - → F15 Chemical Bonding "Comparing Shapes"

The Structure and Properties of Matter

- 14. Identify unknowns as elements, compounds, or mixtures based on physical properties (e.g., density, melting point, boiling point, solubility)
 - → C3 Chemical Matter "Examples of Elements"
 - → C4 Chemical Matter "Types of Compounds"
 - → C5 Chemical Matter "Types of Mixtures"
- 20. Express concentration in terms of molarity, molality, and normality
 - → **I3** Solutions "Specifying the Molarity"
- 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar)
 - → **F13** Chemical Bonding "Classifying by Bond Polarity"
- 23. Model chemical bond formation by using Lewis dot diagrams for ionic, polar, and nonpolar compounds
 - → F15 Chemical Bonding "Comparing Shapes"

compounds → H11 Liquids & Solids "Intermolecular Forces" 25. Name selected structural formulas of organic compounds → **S2** Organic Chemistry "Straight-Chain Alkanes" → **S5** Organic Chemistry "Isomers of the Alkanes" → **S9** Organic Chemistry "Isomers of Alkenes and Alkynes" 26. Differentiate common biological molecules, such as carbohydrates, lipids, proteins, and nucleic acids by using structural formulas → T3 Biochemistry "Carbohydrates" → **T4** Biochemistry "Starch" → **T10** Biochemistry "Building a Model of a Protein" → **T24** Biochemistry "Building a Model of DNA" 28. Name, classify, and diagram alkanes, alkenes, and alkynes → **S2** Organic Chemistry "Straight-Chain Alkanes" → **S5** Organic Chemistry "Isomers of the Alkanes" → **S9** Organic Chemistry "Isomers of Alkenes and Alkynes" 29. Predict the properties of a gas based on gas laws (e.g., temperature, pressure, volume) → **G13** Gases "Pressure-Volume Relationship" → **G14** Gases "Boyle's Law" → **G16** Gases "Pressure and Temperature" → **G18** Gases "Avogadro's Law" 30. Solve problems involving heat flow and temperature changes by using known values of specific heat and latent heat of phase change → **L6** Thermochemistry "Specific Heat" **Chemical Reactions** 31. Describe chemical changes and reactions using diagrams and descriptions of the reactants, products, and energy changes → M1 Kinetics "Observing a Reaction" → M2 Kinetics "Reactive Collisions" → M3 Kinetics "Mechanism of a Reaction"

24. Describe the influence of intermolecular forces on the physical and chemical properties of covalent

- 37. Predict the direction of a shift in equilibrium in a system as a result of stress by using LeChatelier's principle
 - → N2 Equilibria "Equilibrium and Temperature"
 - → N3 Equilibria "Equilibrium and Pressure"
- 40. Compute percent composition, empirical formulas, and molecular formulas of selected compounds in chemical reactions
 - → C21 Chemical Matter "Percent Composition"
- 42. Differentiate between activation energy in endothermic reactions and exothermic reactions
 - → M3 Kinetics "Mechanism of a Reaction"

Forces and Motion

- 46. Identify and compare intermolecular forces and their effects on physical and chemical properties
 - → **F1** Chemical Bonding "The Attraction Between Ions"
 - → **H11** Liquids & Solids "Intermolecular Forces"
 - → **H14** Liquids & Solids "Elements with HydrogenBonding"